Management of Hemostasis in Acute Liver Failure: How much do we really need to manage?

18th AISF Pre-Meeting Course
“Update on the Management of Acute Liver Failure”
Rome, Italy
February 17, 2016

R. Todd Stravitz, M.D.
Section of Hepatology
Hume-Lee Transplant Center of
Virginia Commonwealth University
Richmond, VA, USA
R. Todd Stravitz, M.D.
Professor of Medicine
Virginia Commonwealth University

I have financial relationships to disclose within the past 12 months relevant to my presentation:
TEM Systems, Inc (research grant support)

AND

My presentation includes discussion of off-label or investigational use:
Thromboelastography, thromboelastometry
Features of Acute and Chronic Liver Disease
Fueling the Perception of a Bleeding Tendency

<table>
<thead>
<tr>
<th>Feature</th>
<th>Cirrhosis</th>
<th>Acute Liver Failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portal Hypertension</td>
<td>+++</td>
<td>- / +</td>
</tr>
<tr>
<td>Synthetic Failure / ↑ INR</td>
<td>+</td>
<td>+++</td>
</tr>
<tr>
<td>Thrombocytopenia</td>
<td>+++</td>
<td>+ / ++</td>
</tr>
<tr>
<td>SIRS</td>
<td>+</td>
<td>+++</td>
</tr>
</tbody>
</table>
Hemostasis in Acute Liver Failure: How much do we really need to manage?

- What are the clinical manifestations of abnormal hemostasis in patients with ALF?
- What is the state of global hemostasis?
- What mechanisms exist to rebalance hemostasis in patients with ALF?
- When/how does bleeding need treatment?
Bleeding in Acute Liver Failure: Study Patients

2,684 registry patients were assessed for eligibility

1,657 met study criteria

409 ALL patients
260 21-day outcome missing
28 no platelets on Day 1
280 non-monotonic missingness

N = 713
Spontaneous Survivors (43%)

N = 412
Liver Transplant (25%)

N = 532
Death (32%)

N = 48
Bleeders

N = 665
Non-Bleeders

N = 28
Bleeders

N = 384
Non-Bleeders

N = 97
Bleeders

N = 435
Non-Bleeders

INR and Platelet Counts by Day of Admission

p<0.01 *p<0.0001
Relationship Between Thrombocytopenia and the SIRS in Patients with Acute Liver Failure

N=1820
Platelet Count and INR According to Outcome of Acute Liver Failure

§ TFS vs. death
† OLT vs. death
*TFS vs. OLT
1 symbol, P<0.05
3 symbols, P<0.001
Sites of Spontaneous Bleeding in Patients with Acute Liver Failure

N = 173
(Incidence: 10.4%)

- GI
- Intracranial
- Skin/IV
- Oro/naso-pharyngeal
- Pulmonary
- Other

Stravitz, et al. AASLD. 2013
Spontaneous Bleeding Complications in ALF: Related to the Platelet Count, not the INR

Platelet Count (x10^9/L)

- **Non-Bleeder**
- **Bleeder**

INR

- **Non-Bleeder**
- **Bleeder**

***P < 0.001

*P < 0.05
Survival According to Spontaneous Bleeding Complications within Days 1-7 of Admission for ALF

Product-Limit Survival Estimates
With 95% Hall-Wellner Bands

Time after Admission (d)
Survival Probability

Bleeding Complications

+ Censored
Logrank p < .0001

BLEEDER
0
1
 Outcome of Acute Liver Failure According to Receipt of Transfusions

<table>
<thead>
<tr>
<th>Transfusion</th>
<th>Transplant/Death N = 846</th>
<th>Spontaneous Survivors N = 752</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>Percent</td>
<td>N</td>
</tr>
<tr>
<td>Red Blood Cells</td>
<td>403</td>
<td>47.64</td>
<td>205</td>
</tr>
<tr>
<td>Plasma</td>
<td>640</td>
<td>75.65</td>
<td>315</td>
</tr>
<tr>
<td>Platelets</td>
<td>257</td>
<td>30.38</td>
<td>105</td>
</tr>
</tbody>
</table>
Bleeding Complications in ALF: Summary of Clinical Findings

- Bleeding incidence is low (10.4%)
- Primary site of bleeding: UGI (92%)
- Many more receive RBC (37.4%) than bleed
- Transfusion of any blood product portends a poor outcome
- Bleeding complications within 7 d of admission are associated with increased mortality at 21 d, but increased mortality occurs after Day 7.
Hemostasis Assessed by Thromboelastography in Acute Liver Failure

<table>
<thead>
<tr>
<th>TEG Parameter</th>
<th>Normal Range</th>
<th>ALI/ALF (N=51)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-time (min)</td>
<td>2.5 - 7.5</td>
<td>4.7 ± 1.9</td>
</tr>
<tr>
<td>K-time (min)</td>
<td>0.8 - 2.8</td>
<td>1.7 [0.8-20.0]</td>
</tr>
<tr>
<td>(\alpha)-Angle (degrees)</td>
<td>55.2 - 78.4</td>
<td>63.7 ± 12.2</td>
</tr>
<tr>
<td>Maximum Amplitude (mm)</td>
<td>50.6 - 69.4</td>
<td>55.0 ± 10.9</td>
</tr>
<tr>
<td>Lysis 30 (%)</td>
<td>0.0 - 7.5</td>
<td>0.0 [0.0-2.1]</td>
</tr>
</tbody>
</table>

Relationship Between Maximal Clot Strength by Thromboelastography and the SIRS in Acute Liver Failure

Hypothesis:

SIRS ➔ Acute Phase Reaction ➔ vWF, Factor VIII ➔ Clot strength

P = 0.02
Thrombin Generation and Inhibition

Thrombin Generation

- FXI
- FIX
- FVIII
- FX
- Activated Platelets
- FVIIa TF
 - FXa
 - FVa
 - Prothrombin
 - Fibrinogen
 - Thrombin
 - Fibrin

Thrombin Inhibition

- Protein C/S
- Thrombomodulin
 - Endothelium
- Endogenous heparinoids
- Prothrombin
 - FXa
 - FVa
 - Thrombin
 - AT
 - INR
Thrombin Generation in Patients with Acute Liver Failure

Thrombomodulin (TM)

Endothelium

FXI

FIX FVIIIa

FVIIa TF

Prothrombin

Thrombin

Protein C

Fibrinogen Fibrin

FXa FVa

Rebalanced Hemostasis: Pro- and Anti-Coagulant Proteins Decrease in Parallel in Acute Liver Failure

Mean 25% of normal

F_V vs. Protein C
$r = 0.42$
$P = 0.002$

Median 6% of normal

F_V vs. Protein S
$r = 0.49$
$P = 0.0002$

Median 5% of normal

F_{VII} vs. Protein C
$r = 0.62$
$P < 0.0001$

Mean 15% of normal

F_{VII} vs. Protein S
$r = 0.37$
$P = 0.007$
Compensation for Thrombocytopenia in ALF: Increased Platelet-Endothelial Cell Adhesion

Platelet Adhesion and Aggregation in Patients with ALF and Normal Controls

A: Control

B: ALF

C: Surface coverage (%)

D: Platelet aggregate size (µm²)

p<0.01
Possible Role of Microparticles in Rebalancing Hemostasis in ALF

- Platelets → Platelet MP’s → SIRS → Thrombocytopenia → Tissue factor (TF) → Kupffer cells, hepatocytes, stellate cells → Necrotic hepatocytes
- Propagation of inflammatory response
- Thrombosis
- MOSF
- Liver Injury
- EC MP’s

Microparticles in Patients with Acute Liver Failure: Phenotyping by Flow Cytometry

Microparticle Sizing/Enumeration (ISADE®) on Admission for Acetaminophen Overdose

- INR 4.8
- FV < 5%
- Lactate 8.7
- Grade 4 Coma
- SIRS # 3
- pH 7.34
- Microparticles 0.28-0.64µm
- Larger platelet fragments
Concentration of Microparticles in Patients with Acute Liver Failure and Normal Healthy Controls

ALF N=50
Control N=13

\[P < 0.0001 \]
Microparticles in Patients with Acute Liver Failure: Relationship to SIRS on Admission

Microparticles in Patients with Acute Liver Failure: Relationship to Outcome

Hospital Day 1

Hospital Day 3

\(P = 0.006 \)

\(P = 0.0002 \)

TFS, transplant-free survival

LT, liver transplantation

Microparticles in Patients with Acute Liver Failure: Tissue Factor-Dependent Procoagulant Activity

PS, phosphatidyl serine
TF, tissue factor (factor VII/VIIa receptor)

Procoagulant activity

0.1-1μm

MPTF, microparticle tissue factor

Key, NS. Thrombosis Res. 2010;125: S42-S45.
Defective Fibrinolysis in Patients with Acute Liver Failure

***P < 0.0001

Conclusion: Hemostasis Remains “Re-balanced” in Most Patients with Acute Liver Failure

Primary hemostasis

- Thrombocytopenia
- Microparticle Formation
 - High von Willebrand factor
 - Low ADAMTS-13

Coagulation

- Low Factors II, V, VII, IX, X, XI
- Low Protein C/S, AT
- High Factor VIII

Fibrinolysis

- Low antiplasmin, TAFI
- High t-PA
- Low plasminogen

Anti-hemostatic Drivers

Pro-hemostatic Drivers

Synthetic Failure + Cytokine Storm =

Hemostasis in Acute Liver Failure: Management Case

- 52 year old male with ALF of indeterminate etiology
- SIRS+, Grade 4 hepatic encephalopathy, NH$_3$ = 104, posturing
- INR 5.6, Factor VII 1%, Factor V 17%, Factor VIII 431%, platelets 126
- Central line and dialysis catheters *thrombosed*

- Thromboelastogram:

- Intracranial pressure monitor placed without factor repletion, without complication; Transplanted successfully.
Hemostasis in Acute Liver Failure: How much do we really need to manage?

- Global hemostasis in most patients with ALF remains rebalanced

- The administration of pro-coagulant factors may exacerbate a microcirculatory hypercoagulable state (and cause harm)

- Patients with ALF probably do not require correction of the INR prior to procedures

- Significant active bleeding might be best managed with an assay of global hemostasis.
Blood Component Repletion in Patients with ALF: Recommendations made cautiously and with humility

<table>
<thead>
<tr>
<th>Blood Component</th>
<th>Level to Replete</th>
<th>Pre-procedure Prophylaxis</th>
<th>Treatment of Active Bleeding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plasma</td>
<td>?</td>
<td>?</td>
<td>Just enough</td>
</tr>
<tr>
<td>Platelets</td>
<td><60 x 10⁹/L</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>Fibrinogen</td>
<td><100 mg/dl</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>RBC</td>
<td>Hb <7 gm/dl</td>
<td>+</td>
<td>++</td>
</tr>
</tbody>
</table>
Investigation of Hemostasis in Acute Liver Failure: Collaborators

Arun J. Sanyal
Virginia Commonwealth University
Richmond, VA

Ton Lisman
University Medical Center Groningen
The Netherlands

Don A. Gabriel
Nigel Key
University of North Carolina
Chapel Hill, NC

Valerie Durkalski
Will Lee
The ALF Study Group
UTSW, Dallas
MUSC, Charleston